Дейстия с дроби

1. Като започнете от най-малкото, подредете числата:
 а) 0,3; 0,21; 0,058; 0,301 →
 б) \(\frac{1}{3}; 0,6; \frac{13}{15} →\)

2. Извършете действията:
 а) \(\frac{1}{3} + \frac{1}{2} = \)
 б) \(\frac{3}{8} - \frac{1}{4} = \)
 в) \(\frac{1}{7} + 0,3 = \)
 г) \(\frac{5}{9} - 0,1 = \)
 д) \(5\frac{1}{2} + 2,2 = \)
 е) \(7,3 - 5\frac{2}{3} = \)

3. Извършете действията:
 а) \(5 - (6,6 - 3,8) = \)
 б) \(3,7 - (5,1 - 2,5) = \)
 в) \(5\frac{2}{7} + \left(3\frac{3}{7} - \frac{4}{7}\right) = \)
 г) \(3\frac{1}{3} + \left(5\frac{1}{2} - \frac{1}{6}\right) = \)
 д) \(5,8 - (3,6 + 1,4) = \)
 е) \(7,8 - (5,2 - 2,6) = \)

4. Извършете действията:
 а) \(0,3 \cdot 0,2 = \)
 б) \(2,4 : 0,2 = \)

5. Пресметнете:
 а) \(A = \left(3\frac{1}{7} - 0,2\right) : 103 + \frac{34}{35} = \)
 б) \(B = \left(3\frac{1}{7} : 11 + \frac{3}{7}\right) : 2\frac{1}{3} + 5\frac{5}{7} = \)
1 Намалете a с 15% от a, ако:
 a) $a = 120$ →
 b) $a = 25,6$ →

2 Увеличете b с 20% от b, ако:
 a) $b = 340$ →
 b) $b = 45,5$ →

3 Цената на един пуловер е 40 лв. През пролетта тя е намалена с 20%, а през лятото с още 10%. Намерете цената на пуловера след второто намаление.

Решение:

Цената на пуловера след второто намаление е 28,80 лв.

4 Дадено: трапец
 $a = 18$ см
 $b = \frac{1}{3}$ от a
 $h = 60\%$ от b
 $S =$?

Решение:
 $b =$
 $h =$
 $S = a \cdot \frac{a+b \cdot h}{2}$
 $S = 43,2$ см2

5 Дадено: успоредник
 $a = 12$ см
 $h_a = 4$ см
 $b = 8$ см
 $h_b =$?

Решение:
 $S = a \cdot h_a$
 $S = b \cdot h_b$
 $h_b = 6$ см
Тема № 1
Входно ниво

1 Разликата $\frac{5}{6} \cdot \frac{1}{3}$ е:
 A) $\frac{1}{6}$; B) $\frac{2}{3}$; C) $\frac{1}{3}$; D) $\frac{1}{2}$.

2 Стойността на израза $\frac{2}{5} \cdot \frac{1}{2} \cdot 0.8$ е:
 A) 0.8; B) $\frac{2}{5}$; C) $\frac{3}{5}$; D) 0.4.

3 Стойността на израза $\left(\frac{8}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \right)$ е:
 A) $\frac{5}{9}$; B) 4.25; C) $\frac{5}{9}$; D) 17.

4 Ако 30% от $x = 60$, намерете x.

5 Ако $a = 12$, $b = \frac{2}{3}$ от a, а $c = 25\%$ от b, то c е:
 A) 8; B) 4; C) 6; D) 2.

6 Ако $a = 240$ и намалим a с 10%, кое число ще получим?

7 Ако $a = 170$ и увеличим a с 15%, ще получим:
 A) 144,5; B) 25,5; C) 195,5; D) 165,5.

8 Ако x% от 25 е 4, то x е:
 A) 1,6; B) 16; C) 0,16; D) 20.

9 Цената на бананите през есента е $1,20$ лв. за 1 килограм, а през пролетта $1,80$ лв. за 1 килограм. С колко процента се е увеличила цената?
 A) 60; B) 50; C) 45; D) 40.

10 Цената на едно зимно яке през лятото е 60 лв. През есента цената му се увеличила е 40%, а през пролетта цената му е намалена два пъти. Намерете цената на якето през пролетта.

Таблица за оценка

<table>
<thead>
<tr>
<th>№</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговор</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Точки</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговор</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Точки</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Оценка $K = 2 + \frac{1}{7} \cdot n$, където n е броят на получените точки.

11 Намислих число. Увеличих го с $2\frac{1}{5}$ и получил разликата на числата 5 и 0.2. Намисленото число е:
 A) 2,6; B) 3; C) 3,6; D) 4.

12 Иван купил 300 грама кашкавал от 5,60 лв. за 1 килограм и половин килограм салам и платил общо 4,68 лв. Цената на 1 килограм салам е:
 A) 6,20 лв.; B) 6 лв.; C) 6,10 лв.; D) 7 лв.

13 Ромб с периметър 36 сантиметра и височина 0,5 десетиметра има лице (в квадратни сантиметри):
 A) 18; B) 30; C) 40; D) 45.

14 Лицето на правоъгълен триъгълник е 27 квадратни сантиметра. Ако единият катет е 9 сантиметра, намерете другия катет в милиметри.

15 Квадрат и правоъгълник са равнолицеви. Периметърът на квадрата е 32 сантиметра. Ако едната страна на правоъгълника е 16 сантиметра, периметърът му в сантиметри е:
 A) 40; B) 42; C) 48; D) 50.

Помощно поле:
1. Разликата \(\frac{1}{2} - \frac{1}{6} \) е:
 А) \(\frac{2}{3} \); Б) \(\frac{1}{3} \); В) \(\frac{1}{2} \); Г) \(\frac{1}{6} \).
2. Намерете стойността на израза
 \(2,4 \cdot \frac{2}{3} - 2,0 \cdot 6 \).
3. Стойността на израза \(\left(\frac{1}{2} - \frac{2}{3} \right) \cdot \frac{4}{5} \) е:
 А) \(12 \frac{1}{5} \); Б) \(12 \frac{1}{3} \); В) \(12 \); Г) \(11 \).
4. Ако \(x \% \) от 210 е 126, то \(x \) е:
 А) 6; Б) 20; В) 40; Г) 60.
5. Ако \(a = 1220 \) и увеличим \(a \) с 5%, кое число ще получим?
6. Цената на една блуза е 27 лв. След намаление с 10% новата цена в лева е:
 А) 24; Б) 24,30; В) 26; Г) 25,30.
7. Сборът на числата \(\frac{3}{4} \) и репротичното му число е:
 А) 1; Б) \(\frac{3}{4} \); В) \(\frac{11}{2} \); Г) \(2 \frac{1}{12} \).
8. Намерете \(x \), ако \(x \cdot 5 = 2 \frac{2}{5} - 1 \).
9. Г-жа Асенова получи премия от 651 лв., която е 105% от месечната заплата. Месечната заплата на г-жа Асенова е:
 А) 620 лв.; Б) 661 лв.; В) 650 лв.; Г) 660 лв.
10. Цената на 1 килограм мандарини е 2 лв. Преди Коледа мандарините посъкъпили с 30%. След празниците търговцът намалял коледната цена с 30%. Цената на мандарините след празниците е:
 А) 2 лв.; Б) 1,82 лв.; В) 1,92 лв.; Г) 1,80 лв.
11. Намислят число. Намалят го с \(3 \frac{2}{3} \) и получих разликата на числата \(6 \) и \(1 \frac{4}{5} \). Намисленото число е:
 А) 8; Б) 7 \(\frac{3}{5} \); В) 8 \(\frac{3}{5} \); Г) 9.
12. Даден е трапец с основи \(a, b \) и височина \(h \). Ако \(a = 20 \) сантиметра, \(b \) е \(3 \frac{3}{4} \) от \(a \), \(h \) е 80% от \(b \), намерете лицето на трапеца в квадратни сантиметри.
13. Периметърът на ромбо е 28,8 сантиметра. Височината на ромбо е \(\frac{5}{8} \) от дължината на страната му. Лицето на ромбо в квадратни сантиметри е:
 А) 51,84; Б) 41,84; В) 38,4; Г) 32,4.
14. Успоредник със страни 8 сантиметра и 6 сантиметри има лице 42 квадратни сантиметри. По-голямата височина на успоредника в сантиметри е:
 А) 7; Б) 6,5; В) 7,5; Г) 8.
15. Квадрат и правоъгълен триъгълник имат равни лица. Ако периметърът на квадрата е 20 сантиметра, а единиет катет на триъгълника е 1 дециметър, намерете другия катет в сантиметри:
 А) 4,5; Б) 5; В) 5,5; Г) 6.

Помощно поле:

<table>
<thead>
<tr>
<th>№</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговор</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Точки</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>№</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговор</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Оценка \(K = 2 + \frac{1}{7} \cdot n \), където \(n \) е броят на получените точки.
Състезание с естествен степенен показател

1. Запишете като степен произведенията:
 a) \(7 \cdot 7 \cdot 7 \cdot 7 = \)
 b) \(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \)
 v) \(1,3 \cdot 1,3 \cdot 1,3 \cdot 1,3 = \)

2. Пресметнете:
 a) \(3^4 = \)
 b) \(0,5^3 = \)
 v) \(\left(\frac{2}{3}\right)^5 = \)

3. Между степените поставете един от знаките „>; <; =“:
 a) \(2^{11} \quad 2^{12};\)
 b) \(\left(\frac{1}{5}\right)^9 \quad \left(\frac{1}{5}\right)^{10};\)
 v) \(1^7 \quad 1^{20}.

4. Намерете \(x\), ако:
 a) \(x = \left(2 \frac{1}{3}\right)^2 ;\)
 b) \(x^5 = 1024 ;\)
 v) \(0,3^4 = 0,027.

5. Попълнете таблицата:

<table>
<thead>
<tr>
<th>(a)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a^2 + 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2a^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2a^2 - 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Представете числото \(x^3\) като произведение от прости множители и попълнете таблицата:

| \(x^3\) | 8 | 27 | 125 | 216 | 729 | 1000 | 343 | 3375 |
| \(x\) | | | | | | | | |

7. Пресметнете:
 a) \(2.3^2 + 2^3 = \)
 b) \(5.2^3 - 6^2 = \)
 v) \(16 : 2^{3-7} = \)

8. За \(x = 1; 2; 3; 0\) пресметнете стойността на израза:
 a) \(A = (x+1)^2 -(x-1)^2;\)
 b) \(B = x^3 + 3x^2 +1\)

 \(x = 1\)
 \(A = \)
 \(B = \)

 \(x = 2\)
 \(A = \)
 \(B = \)

 \(x = 3\)
 \(A = \)
 \(B = \)

 \(x = 0\)
 \(A = \)
 \(B = \)
1. Запишете като степен:
 а) $3^3 \cdot 3^2 = 3^{3+2} = 3^5$
 б) $2^4 \cdot 2^5 = 2^{4+5} = 2^9$
 $2^7 \cdot 2^7 = 2^{7+7} = 2^{14}$

2. Запишете като степен:
 а) $5^2 = 5^2 = 2^2$
 б) $5^4 = 5^4 = 2^4$

3. Извършете деление:
 $7^8 \div 7^2 = 7^{8-2} = 7^6$
 $5^9 \div 5^3 = 5^{9-3} = 5^6$
 $2^3 \div 2^5 = 2^{3-5} = 2^{-2}$
 $3^{10} \div 3^3 = 3^{10-3} = 3^7$

4. Пременете:
 а) $2^4 \cdot 3^3 \cdot 5^2 = 2^4 \cdot 3^3 \cdot 5^2$
 б) $11^4 \cdot 13^3 \cdot 11.13 = 11^4 \cdot 13^3 \cdot 11.13$

5. Опростете изразите ($a \neq 0, b \neq 0$):
 $a^2 \div a^1 = a^{2-1} = a^1$
 $a^2 \cdot a^3 = a^{2+3} = a^5$
 $25 \cdot a^3 \cdot b^8 \div 5 \cdot a^2 \cdot b^4 = 5 \cdot a \cdot b^4$
 $81 \cdot a^3 \cdot b^6 \div 9 \cdot a^3 \cdot b^6 = 9 \cdot a^3 \cdot b^6$

6. Опростете изразите и пременете ($a \neq 0, b \neq 0$):
 а) $A = \frac{2 \cdot a^3 \cdot a^4}{a^2} = a^{3+4-2} = a^5$
 За $a = 2$, $A = 2^5$
 За $a = 3$, $A = 3^5$
 За $a = 133$, $A = 133^5$
 б) $B = \frac{a^7 \cdot a^8 \cdot b^6}{a^6 \cdot a^10 \cdot b^3 \cdot b^3} = a^{7+8-6-10} \cdot b^{6-3-3} = a^{-1} \cdot b^0$
 За $a = 1$, $b = 2$, $B = 2^0$
 За $a = 3$, $b = 18$, $B = 3^0$
 За $a = 51$, $b = 102$, $B = 51^0$
 За $a = 5$, $b = 10$, $C = 10^0$
 За $a = 12$, $b = 24$, $C = 24^0$
 За $a = 0.5$, $b = \frac{1}{3}$, $C = 0.5^0$
1. Представете като произведение на степени изразите:

\[(a \cdot b)^3 = (3 \cdot a \cdot b)^6 = (2 \cdot a \cdot b \cdot m)^6 =\]

\[(2 \cdot a \cdot m)^4 = (0, 3 \cdot a \cdot b)^4 = (3 \cdot a \cdot b \cdot c)^8 =\]

2. Представете като степен произведенията:

\[a^5 \cdot b^4 = 3^3 \cdot a^3 \cdot b^3 = 0,7^8 \cdot a^8 \cdot m^8 =\]

\[3^5 \cdot m^5 = 2^7 \cdot a^7 \cdot b^7 = 3^2 \cdot a^2 \cdot b^2 \cdot c^2 =\]

3. Пресметнете по два начина:

\[2^2 \cdot 3^2 = \begin{cases} (2.3)^2 = 6^2 = 36 \\ 4.9 = 36 \end{cases} \]

\[5^2 \cdot \left(\frac{1}{5}\right)^2 = \left(\frac{1}{3}\right)^3 = \left(\frac{1}{17}\right)^8 = \]

4. Пресметнете:

\[9^7 \cdot \left(\frac{1}{9}\right)^7 = 7^7 \cdot \left(\frac{1}{7}\right)^7 = 17^8 \cdot \left(\frac{1}{17}\right)^8 = \]

5. Представете като частно от степени изразите \((a \neq 0, b \neq 0)\):

\[\left(\frac{a}{b}\right)^3 = \left(\frac{3}{a}\right)^5 = \left(\frac{a}{2}\right)^7 = \left(\frac{b}{a}\right)^8 = \left(\frac{1}{b}\right)^9 = \]

6. Представете като степен частното \((a \neq 0, b \neq 0)\):

\[\frac{a^7}{b^7} = \frac{a^3}{b^3} = \frac{2^4}{a^4} = \frac{a^8}{3^5} = \frac{b^6}{a^8} = \]

7. Извършете степенуването:

\[\left(a^2\right)^3 = \left(b^3\right)^2 = \left(a^2\right)^5 = \left(a^4\right)^3 = \left(b^7\right)^{10} = \]

8. Извършете степенуването:

\[(2ab)^3 = (a^2b^3)^3 = (2ab^6)^3 = \]

\[(5a^2b)^2 = (a^{11}b^{12})^2 = \left(\frac{a \cdot b^2}{3}\right)^3 = \]

\[(3ab^2)^2 = (a^3b^4)^3 = (3a^2b^5c)^3 = \]

\[(a^4b^2c^4)^2 = (2a^7b^2c^5)^3 = \left(\frac{3a^4b^2}{2c}\right)^3 = \]

* Прието е произведение от вида \(2 \cdot a \cdot b^2\) да се записва \(2ab^2\).
Действия със степени

1. Опростете изразите:

 \[(a^3)^5 \cdot a^7 = (a^3)^2 \cdot (a^2)^5 = \quad 2^3 \cdot (a^7)^2 \cdot a = \]

 \[(a \cdot b^3)^3 \cdot a^4 = (a^3 \cdot b^2)^2 \cdot a^2 = \quad (2a^2)^2 \cdot (a \cdot b^2)^3 = \]

2. Опростете изразите \((a \neq 0)\):

 \[\frac{a^5 \cdot a^{11}}{(a^3)^3} = \frac{a^7 \cdot a^8}{(a^4)^3} = \quad (a^3)^2 \cdot a^2 = \]

 \[a^8 \cdot a^2 \cdot a^4 = \]

3. Запишете степените като произведение от степени (основите на тези степени да са прости числа):

 \[6^3 = (2 \cdot 3)^3 = 2^3 \cdot 3^3 \quad 14^2 = \quad 30^6 = \]

 \[15^7 = \quad 12^4 = \quad 45^3 = \]

4. Пресметнете изразите:

 \[\frac{2^1 \cdot 6^4}{2^7 \cdot 3^5} = \quad \frac{15^7 \cdot 3^2 \cdot 5^4}{9^4 \cdot 25^5} = \]

 \[\frac{3^3 \cdot 21^7}{3^1 \cdot 7^6} = \quad [\frac{12^3 \cdot 4^2}{8^3 \cdot 9^2}]^3 = \]

 \[\frac{2^4 \cdot 6^4}{8^4 \cdot 3^3} = \quad [\frac{21^3 \cdot 9^2}{49^3 \cdot 27^3}]^2 = \]

5. Опростете изразите и пресметнете стойността им за \(a = 2\) и \(b = c = 1\):

 \[A = \left(\frac{a^2 \cdot b^4}{c^2}\right)^2 \cdot \left(\frac{a^2 \cdot b^3}{c^5}\right)^3 = \quad A = \]

 \[B = \left(\frac{a^6 \cdot b^3}{c^4}\right)^3 \cdot \left(\frac{c^4}{a^3 \cdot b^5}\right)^4 = \quad B = \]

 \[C = (a^7 \cdot b^8) : (a^3 \cdot b^4)^2 = \quad C = \]

 \[D = \left(\frac{a^2 \cdot b^3}{c}\right)^2 \cdot \left(\frac{a \cdot b^2}{c^3}\right)^3 = \quad D = \]
1. Пресметнете:

\[
\begin{align*}
2^4 - 3^2 &= 1, \\
2^5 - 3^3 &= 1, \\
5^3 - 2^6 &= 1.
\end{align*}
\]

\[
\begin{align*}
\left(\frac{1}{2}\right)^3 - \left(\frac{1}{4}\right)^2 &= 1, \\
\left(\frac{1}{2}\right)^2 - \left(\frac{1}{3}\right)^2 &= 1, \\
\left(\frac{1}{3}\right)^2 - \left(\frac{2}{3}\right)^2 &= 1.
\end{align*}
\]

2. Дадени са изразите \(A = (x + y)^2\) и \(B = x^2 + 2xy + y^2\).

Сравнете числените стойности на \(A\) и \(B\), ако:

a) \(x = 3;\ y = 2\)

\[
A = B = A = B.
\]

b) \(x = 7;\ y = 5\)

\[
A = B = A \ldots.. B.
\]

3. Опростете израза и пресметнете за \(a = 2,\ b = 3:\)

\[
A = \left(\frac{3a^3}{2b^2}\right)^3 \cdot \left(\frac{3a^7}{4b^4}\right)^2.
\]

За \(a = 2,\ b = 3\), \(A = \ldots..\)

4. a) Запишете със стандартен запис числото:

\[
28.10^{12} = 231.10^9 = 0,132.10^{15} = \ldots..\]

b) Запишете в десятична бройна система числото:

\[
2.10^6 = 3,5.10^7 = 1,21.10^8 = \ldots..\]

5. Пресметнете:

a) \[
\left[\frac{49^3 \cdot 14^2 \cdot 8^3}{16^4 \cdot 7^{11}}\right]^{2007} = \ldots..\]

b) \[
\left[\frac{15^8 \cdot 9^5 \cdot 25^2}{5^{12} \cdot 27^6}\right]^{2008} = \ldots..\]

6. Представете като произведение изразите:

\[
\begin{align*}
2^7 + 2^8 &= 2^7 + 2^7 \cdot 2 = (1 + 2) \cdot 2^7 = 3 \cdot 2^7, \\
2.3^5 + 3^6 &= \ldots.., \\
5^7 - 5^6 &= 4.5^6, \\
2^5 \cdot 2^3 - 2^4 &= 3 \cdot 2^3.
\end{align*}
\]

7. Пресметнете:

a) \[
\left(\frac{3.2^9 + 2^{10} - 2^{11}}{5.2^8 - 3.2^9}\right) = \ldots..\]

b) \[
\left(\frac{7^{2005} - 7^{2004} - 7^{2003}}{49^{1002} + 34.7^{2003}}\right) = 1.
\]
Контролна работа
Върху темата „Степенуване“

Помощно поле

1 (1 т.) Стояногта на израза 5^{2-5} - 5^2.2 e:
A) 75; B) 70; В) 65; Г) 60.

2 (2 т.) Ако 3^x = 729, то x e:
A) 7; B) 9; В) 8; Г) 6.

3 (2 т.) Стояногта на израза 3^{6.5^{10.15^7}}/9^{2.25^{9.3^7}} e:
A) 1,6; B) 1,8; В) 2; Г) 2,8.

4 (3 т.) Стояногта на израза 5.2^8 - 2^7/3^2.2^7 e:
A) 3; B) 2; В) 1; Г) 4.

5 (4 т.) Опростете израза \((a \neq 0, b \neq 0)\):

\[A = \frac{(2ab)^3 \cdot 3a^4}{24a^b b^5} = \]

6 (4 т.) Опростете израза \(B = \left(\frac{9x^5}{5}\right)^2 \cdot \left(\frac{5}{3x^3}\right)^3\) и намерете числената му стойност за \(x = \frac{1}{3}\).

\[B = \]

Задача №
1 2 3 4 5 6
Отговори
Получени точки

Общ брой получени точки

Оценка \(K = 2 + \frac{1}{4} \cdot n\), където \(n\) е броят на получените точки.
Вариант 2

Контролна работа

Върху темата „Степенуване“

<table>
<thead>
<tr>
<th>№</th>
<th>Задача</th>
<th>Отговори</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1 т.)</td>
<td>A) 50; B) 55; V) 60; Г) 65.</td>
</tr>
<tr>
<td>2</td>
<td>(2 т.)</td>
<td>A) 7; B) 6; V) 5; Г) 4.</td>
</tr>
<tr>
<td>3</td>
<td>(2 т.)</td>
<td>A) 6; B) 5,5; V) 2,7; Г) 4,5.</td>
</tr>
<tr>
<td>4</td>
<td>(3 т.)</td>
<td>A) 1,7; B) 2,1; V) 2,7; Г) 3,1.</td>
</tr>
</tbody>
</table>
| 5 | (4 т.) | Опростете израза \((a \neq 0, b \neq 0, c \neq 0)\):

\[
A = \frac{(3 \cdot a^2 \cdot b^3 \cdot c^3)}{27 \cdot (a^3 \cdot b \cdot c)^3} =
\]

| 6 | (4 т.) | Опростете израза \(B = \left(\frac{8}{3 \cdot x^3} \right) \cdot \left(\frac{2^2}{3 \cdot x^3} \right)^4\) и намерете числената му стойност за \(x = \frac{1}{2}\). |

\[
B =
\]

за \(x = \frac{1}{2}\), \(B = \)

<table>
<thead>
<tr>
<th>Задача №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговори</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Получени точки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Общ брой получени точки</th>
<th>(n =)</th>
</tr>
</thead>
</table>

Оценка \(K = 2 + \frac{1}{4} \cdot n\), където \(n\) е броят на получените точки.
1. На числова ос са изобразени точките \(A, B, C, D, E \) и \(F \).

На кои числа са образи тези точки (1 м.ед. = 1 деление)?

\[A \rightarrow -3; \quad B \rightarrow \quad ; \quad C \rightarrow \quad ; \quad D \rightarrow \quad ; \quad E \rightarrow \quad ; \quad F \rightarrow \quad \]

2. Върху квадратна мрежа е начертана числова ос (1 м.ед. = 2 деления). Изобразете числата:

-5; -4; 3; -2,5; 1,5; -1; 4,5; 5,5.

3. Върху квадратна мрежа начертайте числова ос (1 м.ед. = 10 деления). Изобразете числата:

1; -1; \(\frac{7}{10} \); \(-\frac{7}{10} \); 0,3; -0,3; \(\frac{3}{5} \) и \(-\frac{3}{5} \).

4. Върху квадратна мрежа е начертана числова ос (1 м.ед. = 2 деления). Намерете образите на целите отрицателни числа, които са разположени „надясно” от числото -8.

5. Върху квадратна мрежа е начертана числова ос (1 м.ед. = 2 деления). Изобразете целите едноцифрови отрицателни числа.
Абсолютна стойност (модул) на рационални числа

1. Изобразете върху числовата ос (1 м.ед. = 1 cm)

 O

 а) т. A, на разстояние 5 cm надясно от т. O;
 б) т. B, на разстояние 5 cm наляво от т. O;
 в) т. C, на разстояние 0 cm от т. O.

 Точката A е образ на числото 5 → |5| = 5
 Точката B е образ на числото →
 Точката C е образ на числото →

2. Върху числовата ос (1 м.ед. = 1 cm) изобразете числата, чийто модул е 4.

3. Попълнете табличата

<table>
<thead>
<tr>
<th>a</th>
<th>5</th>
<th>−3</th>
<th>7,5</th>
<th>$\frac{3}{3}$</th>
<th>−4</th>
<th>0</th>
<th>−2,7</th>
<th>$10\frac{1}{7}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Пресметнете:
 а) $|−3| : \frac{1}{3} − |−5| : |−1,2| =$
 б) $|−12| : \frac{1}{4} − |−4| : |−2| =$

5. Намерете x, ако:
 $x = 5$ $|x| = 1,3$ $|x| = 0$ $|x| = −2$

6. Напишете цели едноцифрови числа, за които е вярно:
 а) $|x| < 5,3 \rightarrow x =$
 б) $|x| > 2,7 \rightarrow x =$

7. Пресметнете стойността на израза $A = 2 \cdot |x| − 3 \cdot |y|$, ако $x = −5, y = 2$

 $A =$
Сравняване на рационални числа

1. На числова ос изобразете числата: -6; -3; 5; -1; 0; 4.

2. В празните квадратчета поставете верния знак „>“ или „<“:
 -6 □ 1; 0 □ 5; -3 □ 6; -1 □ -3; 5 □ -6;
 -4 □ -3; 0 □ -3; 4 □ -6; -6 □ -1; -1 □ 0.

3. Сравнете числата: -5 -3; 1,3 -0,5; 2 1/2 -3 1/3; -2,32 0;
 -4,5 1; -0,8 -0,02; -4 1/7 -5; 0 -2,41.

4. Изобразете на числова ос с подходящо избрана мерна единица числата:
 -1 1/2; 1 1/2; -12/7; -3/2; 5/7; -6/7.

 Подредете числата по големина, като започнете от най-малкото.

5. Изобразете на числова ос с подходящо избрана мерна единица числата:
 -1,2; 0; 1,3; 0,7; -0,3; 0,1; -0,8; 0,9.

 Подредете числата по големина, като започнете от най-голямото.

6. Ако \(x \in \{-8; 13; -5\frac{1}{7}; -3; 1,6\} \), напишете стойностите на \(x \), за които е вярно:

 а) \(x < 0 \), за \(x \in \{ \} \); б) \(-6 < x < 3 \), за \(x \in \{ \} \);
 в) \(-6 < x < 3 \), за \(x \in \{ \} \); г) \(-10 < x < -4 \), за \(x \in \{ \} \).
Събиране на рационални числа

1. Съобразете и запишете с рационални числа:
 a) 7 лв. приход + 2 лв. приход = 9 лв. приход (+7) + (+2) = +9
 b) 8 лв. дълг + 3 лв. дълг =
 в) 11 лв. приход + 11 лв. дълг =
 г) 7 лв. приход + 3 лв. дълг =
 д) 3 лв. приход + 8 лв. дълг =

2. Сравнете спрямо нулата:
 (+1235) + (+327) 0; (-1378,5) + (+2567,1) 0;
 (+1387) + (-273) 0; \(-\frac{513}{3}\) + \(+\frac{512}{2}\) 0.

3. Пресметнете:
 a) \(-13\) + \(-2\) =
 в) \(-8\) + \(-2\) + \(-3,5\) =
 б) \(-18\) + \(-13\) =
 г) \(-1\) + \(-8,7\) + \(-0,3\) =

4. Пресметнете:
 а) \(-10\) + (+2) =
 в) \(-7\) + (+7) =
 б) \(-2\) + (+10) =
 г) \(-4\) + (+1) =

5. Пресметнете:
 а) \(-8\) + \(-5\) + (+2) =
 в) (+8) + (+5) + (-2) =
 б) (+8) + \(-5\) + \(-2\) =
 г) \(-8\) + (+5) + (+2) =

6. Пресметнете рационално:
 а) \(-5\) + (+3,7) + \(-2\) + (+2,3) =
 б) \(-8\frac{1}{3}\) + \(-2,6\) + \(+3\frac{1}{3}\) + \(-7,4\) =
 в) \(-15,25\) + \(-2\frac{3}{7}\) + (+5,25) + \(-3\frac{4}{7}\) =

7. Пресметнете стойността на израза \(A = x + y + |\-2|\), ако:
 a) \(x = 5,7;\ y = 3,8;\ A =
 б) \(x = -4,8;\ y = 5,9;\ A =
 в) \(x = -18\frac{1}{3};\ y = 5\frac{1}{3};\ A =

18
1. Напишете противоположните числа на числата:

-5 → ; 2 → ; 3,5 → ; -4,8 → ; 0 → ; -1/2 →

2. Запишете дадените разлики като сбор от две рационални числа:

(+5) - (+8) = (+5) + (-8)
(-7) - (+5) = (-2 1/2) - (+5) =

(+2) - (-2) = (-8) - (-7) =
(+2 1/3) - (-1/2) =

3. Разкрийте скобите и пресметнете:

(-8) + (+3) = -8 + 3 = -5
(-7) + (-11) =
(-8) - (+5) =
(+5) - (-4) =
(+9) + (-3) =

(-8) - (-3) =
(+8) + (+2) =
(-11) - (+10) =
(+25) + (-5) =
(-50) - (-25) =

4. Пресметнете:

a) 100 + 75 =
b) 5,6 + (-0,6) =
-5,4 + 3,4 =
-4,1 - (-2,3) =
-10,5 - 8 =
-7,8 + (-0,8) =

b) \(\frac{1}{3} + \frac{2}{3} = \)
г) \(5 - \left(\frac{1}{3} \right) = \)

\(-\frac{2}{7} + \frac{4}{7} = \)
\(-\frac{5}{7} - \left(\frac{3}{7} \right) = \)
\(-\frac{1}{3} + \frac{1}{3} = \)

-4,8 - \left(\frac{1,5}{3} \right) =

5. Пресметнете стойността на израза \(A = x + y \), ако:

a) \(x = 5; y = 8,7; A = \)

b) \(x = -3,4; y = 6,2; A = \)

в) \(x = -2,7; y = 3 \frac{3}{7}; A = \)

г) \(x = -17 \frac{1}{3}; y = 5,8; A = \)
Събиране и изваждане на рационални числа

1. Разкрийте скобите и пресметнете:
 a) \(13 + (-2) + (-8) = 13 - 2 - 8 = 3\)
 b) \(18 - (-13) + (-4) = \)
 c) \(-17 + (-8) - (+3) = \)
 d) \(-14 - (+8) - (-9) = \)

2. Направете приведение и пресметнете:
 a) \(-7 + 13 - 4 - 8 + 4 = \)
 b) \(-1 + 20 + 41 - 1 - 30 = \)
 c) \(-13 + 5 - 21 - 7 - 5 + 13 = \)
 d) \(-17,2 + 3,6 - 4,8 + 2,4 + 5,5 = \)

3. Пресметнете по два начина:
 a) \(17 - (9 - 13) = \)
 b) \(-18 - (7 - 18) = \)

4. Попълнете таблицата:

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>7</th>
<th>-3</th>
<th>11</th>
<th>-7</th>
<th>-3,5</th>
<th>13</th>
<th>5,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>-14</td>
<td>-2</td>
<td>-2</td>
<td>-7,2</td>
<td>-3,8</td>
</tr>
<tr>
<td>b</td>
<td>-4</td>
<td>5</td>
<td>-1</td>
<td>25</td>
<td>-4</td>
<td>4,8</td>
<td>1,8</td>
<td>-4,4</td>
</tr>
<tr>
<td>c</td>
<td>a + b</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>a - b</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>a - b - c</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Пресметнете:
 a) \(\frac{1}{2} - \frac{1}{3} - \frac{3}{4} + \frac{1}{5} = \)
 b) \(1,1 - 1 - 0,7 - 2 = \)

6. Разкрийте скобите и пресметнете:
 a) \(15 - (-5 + 4 - 8) = \)
 b) \(-7,8 - (-5 - 3,19 - 5,8) = \)
 c) \(13 - [-15 - (2 - 13)] = \)
 d) \(18,6 - [5,7 - (13,7 - 3,6 + 1)] = \)
1. Като използвате опорния пример $\Box + 2 = 3$, намерете x, ако:

<table>
<thead>
<tr>
<th></th>
<th>$-15,8 + x = 13$</th>
<th>$-13,7 + x = -20$</th>
<th>$15,9 + x = -21$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 13 - (-15,8)$</td>
<td>$x =$</td>
<td>$x =$</td>
<td></td>
</tr>
<tr>
<td>$x = 13 + 15,8$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 28,8$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Намерете x като неизвестно събираме, ако:

<table>
<thead>
<tr>
<th></th>
<th>$x - 5,6 = -7,8$</th>
<th>$x - 15,7 = -15,7$</th>
<th>$x - 13,9 = -2,8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x =$</td>
<td></td>
<td>$x =$</td>
<td>$x =$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Като използвате опорния пример $5 - \Box = 2$, намерете x, ако:

<table>
<thead>
<tr>
<th></th>
<th>$13,5 - x = 21,8$</th>
<th>$9,2 - x = -13,4$</th>
<th>$-15,7 - x = -8,3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x =$</td>
<td></td>
<td>$x =$</td>
<td>$x =$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Намислих едно число. Увеличих го със 17,8 и получих -4,2. Кое число съм намислил? Решение:

5. Ако $x = -2,5; -6\frac{1}{3}; 9; -8$, пресметнете стойността на изразите $A = x + 8$ и $B = -8 - x$:

<table>
<thead>
<tr>
<th>$x =$</th>
<th>$A =$</th>
<th>$B =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = -2,5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = -6\frac{1}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = 9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x = -8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Умножение на рациональные числа

1. Пресметнете:
 а) \(6 \cdot (-4) = \)
 б) \(13 \cdot (-7) = \)
 в) \(-2,0,8 = \)

 \[-6 \cdot (-4) = \]
 \[-7 \cdot 13 = 2 \cdot (-0,8) = \]
 \[-6 \cdot (+4) = \]
 \[-7 \cdot (-13) = -2 \cdot (-0,8) = \]

2. Пресметнете:
 а) \(- \frac{1}{2} \cdot \frac{6}{7} = \)
 б) \(- \frac{7}{8} \cdot \left(- \frac{5}{7} \right) = \)
 в) \(\frac{4}{5} \cdot \left(- \frac{5}{4} \right) = \)

 \[- \frac{2}{3} \cdot \frac{9}{10} = - \frac{1}{3} \cdot \left(- \frac{3}{4} \right) = - \frac{7}{11} \cdot 0 = \]

3. Ако \(x = -3; 1,2; \frac{1}{3}; -3,0\), пресметнете:
 \[A = -2 \cdot x \quad B = 3 \cdot x \quad C = -0,2 \cdot x \quad D = - \frac{2}{3} \cdot x\]

 За \(x = -3\), \(A = \quad B = \quad C = \quad D = \)
 За \(x = 1,2\), \(A = \quad B = \quad C = \quad D = \)
 За \(x = \frac{1}{3}\), \(A = \quad B = \quad C = \quad D = \)
 За \(x = -3,0\), \(A = \quad B = \quad C = \quad D = \)

4. Пресметнете произведенията:
 \[7 \cdot (-2) \cdot (-3) = \]
 \[4 \cdot (-1) \cdot (-2) \cdot (-3) = \]

 \[-7 \cdot (-2) \cdot (-3) = \]
 \[-5 \cdot (-4) \cdot \frac{1}{100} = \]

 \[-7 \cdot 2 \cdot (-3) = \]
 \[6 \cdot \left(- \frac{1}{2} \right) \cdot 10 \cdot (-4) \cdot \left(- \frac{1}{60} \right) = \]

5. Ако \(3,3,4,4,5,5 = 79,86\), съобразете:
 \[-3,3,4,4,(-5,5) = \]
 \[-3,3,(-4,4),5,5 = 3,3,4,4,(-5,5) = \]

6. Пресметнете рационално:
 а) \(2 \cdot (-3,7) \cdot (-5) = \)
 б) \(\frac{1}{3} \cdot 5 \cdot 8 \cdot (-6) \cdot (-5) = \)
 в) \(-1,5 \cdot 13,3 - 8,5 \cdot 13,3 = \)
 г) \(-13,7,5 \cdot 8 + 3,7,5,8 = \)
Попълнете таблицата:

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>-8</th>
<th>8</th>
<th>-8</th>
<th>15</th>
<th>-15</th>
<th>15</th>
<th>-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>3</td>
<td>3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Пресметнете:

$$16:2 = 13,6:4 = 7: \frac{1}{3} =$$

$$16:(-2) = -13,6:4 = -7: \frac{1}{3} =$$

$$-16:2 = 13,6:(-4) = 7:(-\frac{1}{3}) =$$

$$-16:(-2) = -13,6:(-4) = -7:(-\frac{1}{3}) =$$

Като знаете, че 4551:123 = 37, пресметнете:

$$-4551:123 = \frac{4551}{(-123)} = -4551:(-123) =$$

Ако $x = -4; -0,6; -\frac{1}{3}$, пресметнете

$$A = x:(-4); \quad B = 2:x; \quad C = -x:0,2.$$

За $x = -4$, $A = \ldots$, $B = \ldots$, $C = \ldots$

За $x = -0,6$, $A = \ldots$, $B = \ldots$, $C = \ldots$

За $x = -\frac{1}{3}$, $A = \ldots$, $B = \ldots$, $C = \ldots$

Пресметнете:

$$\frac{42}{7} = \frac{15}{-35} = \frac{-33}{-55} = \frac{-18}{27} = \frac{-24}{-52} =$$

Пресметнете рационално:

a) $-18:5-12:5 = (-18-12):5 =$

b) $-30:(-7)+2:(-7) =$

в) $-15,7:(-3)-14,3:(-3) =$

g) $-27,5:(-0,3)-32,5:(-0,3) =$
1. Попълнете таблицата:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
<th>-8</th>
<th>-4</th>
<th>-12</th>
<th>-8</th>
<th>-3</th>
<th>5</th>
<th>-3,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>-1/2</td>
<td>-1/3</td>
<td>-0,2</td>
<td>-0,3</td>
</tr>
<tr>
<td>a.b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a/b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. За \(x = -8; -2,4; 0,6 \), пресметнете:

\[A = -3 \cdot x; \quad B = x \div (-2). \]

За \(x = -8 \), \(A = \), \(B = \)
За \(x = -2,4 \), \(A = \), \(B = \)
За \(x = 0,6 \), \(A = \), \(B = \)

3. Като използвате опорния пример \(\Box \cdot 2 = 6 \), намерете \(x \), ако:

\[x \cdot (-13) = -39 \quad x \cdot (-0,2) = 3 \quad x \cdot \frac{1}{3} = -12 \]

\[x = \quad x = \quad x = \]

4. Намерете \(x \), ако:

\[x \div (-3) = -12 \quad x \div (-12) = 0,2 \quad x \div 1,2 = -100 \]

5. Като използвате опорния пример \(6 \div \Box = 3 \), намерете \(x \), ако:

\[128 \div x = -4 \quad -32 \div x = -\frac{1}{5} \quad -1,2 \div x = 4 \]

24
Действия с рационални числа

1. Пресметнете:
 а) $7 \cdot (-3) - 8 = \quad \text{в) } 5 \cdot (-2) + 8 \cdot (-3) =$

 $16 - 3 \cdot (-2) = \quad -12 \div 3 - (-18) \div (-6) =$

 $4 + (-2) \div (-5) = \quad 21 \div (-7) + 1,2 \div (-5) =$

 б) $-12 \div 3 + 1 = \quad \text{г) } (7,2 - 17) \div (-3) =$

 $8 \div (-2) - 3 = \quad (-18 \div 3 + 5) \div 0,2 =$

 $-17 - 12 \div (-4) = \quad -18 \div [5 \div (3 + 9)] =$

2. Намерете числената стойност на израза $A = 3 \cdot a - b \div 2 - |a|$ за:
 а) $a = 3, \quad b = 10, \quad A =$

 б) $a = -6, \quad b = -4, \quad A =$

 в) $a = -3, \quad b = 8, \quad A =$

3. Пресметнете:
 а) $-4,9 + 7 \cdot (-9) = \quad = -99$

 б) $-5,7 + (-3,6) \cdot 10 = \quad = -71$

 в) $-78 \div 6 + 3 \cdot (-9) = \quad = -40$

4. а) $-3 \cdot (-1 + 9) + (-12,7) \cdot 0 = \quad = -24$

 б) $14 \div (-2) + (-7) \div (-1) = \quad = 0$

 в) $(2100 \div 10 - 10) \div (-5) = \quad = -40$

 г) $5 \cdot (-2) + 7 \cdot (-4) \div (-1) - 2,4 \cdot 0 + 5 \cdot (-2) = \quad = 8$

5. а) $2 - [(4 - 9) \div (2 - 3)] + 7 \cdot (-8) =$

 $= -59$

 б) $3 \cdot [2 \cdot (18 - 4 \div 2) + 9 \div (-3)] - 88 =$

 $= -1$

 в) $1 - [1001 - 99 \div (-3) + 4 \cdot (1 - 88)] =$

 $= -685$
Степенуване на рационални числа.
Степен с нулеv и цял показател

1. Извършете степенуването:
 а) \((-2)^2 = \)
 б) \((-2)^3 = \)
 в) \((-2)^6 = \)
 г) \((-3)^2 = \)
 д) \((-3)^3 = \)
 е) \((-3)^5 = \)
 ж) \((-5)^4 = \)
 з) \((-1)^1 = \)
 и) \((-1)^3 = \)

2. Пресметнете:
 а) \((-3)^2 + 2^4 \cdot \left(-\frac{1}{2}\right)^3 = \)
 б) \((-2)^7 \cdot 2^5 \cdot 3^8 \cdot 2^8 \cdot 6^2 \cdot (-9)^3 = \)

3. Намерете числената стойност на израза \(A = -x^3 + 2x^2 - x:\)
 за \(x = 2, \) \(A = \)
 за \(x = -2, \) \(A = \)
 за \(x = 1, \) \(A = \)
 за \(x = -1, \) \(A = \)

4. Запишете като степен с основа 3 числото:
 \(1 = \)
 \(\frac{1}{3} = \)
 \(\frac{1}{9} = \)
 \(\frac{1}{27} = \)
 \(\frac{1}{81} = \)
 \(\frac{1}{243} = \)

5. Запишете като степен с основа - цяло число и цял показател дробите:
 \(\frac{1}{5^3} = \)
 \(\frac{3^2}{3^3} = \)
 \(\frac{2^5}{2^2} = \)
 \(\frac{7^8}{7^8} = \)
 \(\frac{5^{-2}}{5^3} = \)

6. Като използвате степените на числото 10, запишете като сбор числота:
 \(231,5 = \)
 \(102,31 = \)
 \(1003,121 = \)

7. Запишете като степен:
 а) с положителен показател: \(2^3 = \)
 б) с отрицателен показател: \(\frac{1}{6^3} = \)
 \(\left(\frac{1}{2}\right)^7 = \)
 \(\left(\frac{2}{3}\right)^{-7} = \)
 \(\left(\frac{1}{3}\right)^7 = \)
 \(\frac{1}{5^3} = \)

8. Пресметнете
 \(\frac{3^{-2} \cdot (-4)^3 \cdot 5^0}{25^1 \cdot 5^{-6} \cdot 6^{-2}} = \)
Декартова координатна система

1. Начертана е Декартова (правовълнна) координатна система Oxу.
 Координатите на точките A, B, C, D са:
 \[A \rightarrow x = 2; \ y = 3; \ A(2; 3) \]
 \[B \rightarrow \]
 \[C \rightarrow \]
 \[D \rightarrow \]

2. Начертана е Декартова координатна система Oxу.
 Намерете координатите на отбележаните точки:
 \[A(3; 0) \]
 \[E \]
 \[B \]
 \[F \]
 \[C \]
 \[M \]
 \[D \]
 \[N \]

3. Върху квадратна мрежа е начертана Декартова координатна система Oxу (1 м.ед. = 1 деление). Означете точките \(A(-3; -2); \ B(4; -2); \ C(2; 2); \ D(0; 2) \). Намерете лицето на четириъгълника \(ABCD \).
 \[ABCD = \]
 \[AB = \]
 \[S = 18 \text{ кв.м.ед.} \]

4. Върху квадратна мрежа начертайте Декартова координатна система Oxу. Означете точките \(A(-4; 0); \ B(2; -3); \ C(0; -2) \). Означете:
 а) т. \(A_1 \), симетрична на \(A \) относно т. \(O \) \(A_1(\ldots) \);
 б) т. \(B_1 \), симетрична на \(B \) относно \(Oy \) \(B_1(\ldots) \);
 в) т. \(B_2 \), симетрична на \(B_1 \) относно \(Ox \) \(B_2(\ldots) \);
 г) т. \(C_1 \), симетрична на \(C \) относно т. \(O \) \(C_1(\ldots) \);
 д) т. \(B_3 \), симетрична на \(B_2 \) относно \(Oy \) \(B_3(\ldots) \).
 Свържете последователно точките \(A, \ B_1, \ C, \ B, \ A_1, \ B_3, \ C_1, \ B_2, \ A \). Оцветете получената фигура.
1. Попълнете таблицата:

<table>
<thead>
<tr>
<th>Твърдение</th>
<th>Отрицание на това твърдение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a \neq b$</td>
</tr>
<tr>
<td>2</td>
<td>$a > b$</td>
</tr>
<tr>
<td>3</td>
<td>$a = b$</td>
</tr>
<tr>
<td>4</td>
<td>$a \geq b$</td>
</tr>
<tr>
<td>5</td>
<td>$a < b$</td>
</tr>
<tr>
<td>6</td>
<td>$a \leq b$</td>
</tr>
</tbody>
</table>

2. Напишете 4 числа, първото от които е $-\frac{1}{2}$, а всяко следващо се получава от предходното, като се умножи с $-\frac{2}{3}$. Числата са: $-\frac{1}{2}$; ; ; ; .

 Намерете:

 а) сбора на второто и третото число ..

 б) разликата на първото и второто число ..

 в) произведението на първото и четвъртото число

 г) частното на първото и четвъртото число ...

 д) сбора на второто число и произведението от първото и третото число

3. Намирам числ. Увеличих го 4 пъти. Полученото число намалих с $2\frac{1}{2}$ и получих разликата $6-12\frac{1}{2}$. Кое число съм намирах?

 Намирах съм числото x → ..

 $x =$..

4. По дадената схема напишете числов израз и пресметнете стойността му.

 \[A = \]

<table>
<thead>
<tr>
<th>Делимое</th>
<th>Делител</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,75</td>
<td>-0,25</td>
</tr>
</tbody>
</table>
Контролната работа върху темата „Рационални числа“

Помощно поле

1. Стоимостта на израза $-302 - 23 - (23 - 302 - 4) =:
 A) 654; Б) 150; В) -50; Г) -42.

2. Стоимостта на израза $-56 \div 7 + \left| -2 \right| \left(-\frac{3}{2} \right) =:
 A) -15; Б) -1; В) 2; Г) 15.

3. Стоимостта на израза $\frac{(-3)^2 \cdot 2 \cdot (-2^4)}{6^3 \cdot 5^2} =:
 A) -\frac{1}{15}; Б) \frac{1}{15}; В) -\frac{1}{3}; Г) \frac{1}{3}.

4. Намирах число. Увеличих го с 5, полученото число умножих с (-10) и получи -30. Намиреното число е:
 A) $\frac{3}{5}$; Б) $-\frac{3}{5}$; В) -2; Г) 2.

5. Опростете израза $A = \frac{(-3x)^5 \cdot (-5x)^{-2}}{x^2 \cdot (3y)^3}$ и намерете числената му стойност за $x = -5$; $y = -1$.
 $A = \ldots$

6. Пресметнете израза $B = \frac{12}{13} + \left[\left(\frac{9}{10} - 4,3 \right) : (1,2 - \frac{1}{3}) \right]$:
 $B = \ldots$

<table>
<thead>
<tr>
<th>Задача №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Общ брой получени точки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговори</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Получени точки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на получените точки.
1. Стойността на израза $-5 - [4 + 103 - (71 + 5)]$ е:
 А) 36; Б) -36; В) -168; Г) 178.

2. Стойността на израза $-70 + \left| -1 \frac{1}{4} \right| - 2 \left(-1 \frac{1}{8} \right)$ е:
 А) -66,5; Б) -70 $\frac{7}{8}$; В) -69; Г) -71.

3. Стойността на израза $\frac{3^7 \times (-5)^6 \times 27^4}{(-9)^7 \times 15^5}$ е:
 А) $3^3 \times 5$; Б) -5; В) -15; Г) $-3^5 \times 5$.

4. Намисли едно число. Увеличих го 3 пъти. Полученото число увеличи с 24 и получил сбора на числото +5 и -5. Намисленото число е:
 А) -3; Б) -5; В) -7; Г) -8.

5. Опростете израза $A = \frac{(-2xy)^{-1} \cdot (-5xy)^2}{(-2x)^3 \cdot 5y^{-3}}$ и намерете чиселната му стойност за $x = -5; y = -2$.

 $A =$

6. Пресметнете израза $B = \left(12 \div 3 \frac{1}{2} - \frac{2}{3} \right) \cdot 1 \frac{1}{2} - 8$.

 $B =$

<table>
<thead>
<tr>
<th>Задача №</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отговори</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Получени точки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общ брой получени точки</td>
<td>$n =$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Оценка $K = 2 + \frac{1}{4} \cdot n$, където n е броят на получените точки.